$reduce (aggregation)
Definition
New in version 3.4.
Applies an expression to each element in an array and combines theminto a single value.
$reduce
has the following syntax:
- {
- $reduce: {
- input: <array>,
- initialValue: <expression>,
- in: <expression>
- }
- }
FieldTypeDescriptioninput
arrayCan be any valid expressionthat resolves to an array. For more information onexpressions, see Expressions.
If the argument resolves to a value of null
or refers to amissing field, $reduce
returns null
.
If the argument does not resolve to an array or null
nor refersto a missing field, $reduce
returns an error.initialValue
expressionThe initial cumulative value
set before in
is applied to the first elementof the input
array.in
expressionA valid expression that $reduce
appliesto each element in the input
array in left-to-right order. Wrap the input
value with $reverseArray
to yield the equivalent of applyingthe combining expression from right-to-left.
During evaluation of the in
expression, two variables will be available:
value
is the variablethat represents the cumulative value of the expression.this
is the variablethat refers to the element being processed.
If input
resolves to an empty array, $reduce
returnsinitialValue
.
Example | Results |
---|---|
| "abc" |
| { "sum" : 15, "product" : 48 } |
| [ 1, 2, 3, 4, 5, 6 ] |
Examples
Multiplication
Probability
A collection named events
contains the events of a probabilityexperiment. Each experiment can have multiple events
, such asrolling a die several times or drawing several cards (without replacement)in succession to achieve a desired result. In order to obtain theoverall probability of the experiment, we will need to multiply theprobability of each event in the experiment.
- {_id:1, "type":"die", "experimentId":"r5", "description":"Roll a 5", "eventNum":1, "probability":0.16666666666667}
- {_id:2, "type":"card", "experimentId":"d3rc", "description":"Draw 3 red cards", "eventNum":1, "probability":0.5}
- {_id:3, "type":"card", "experimentId":"d3rc", "description":"Draw 3 red cards", "eventNum":2, "probability":0.49019607843137}
- {_id:4, "type":"card", "experimentId":"d3rc", "description":"Draw 3 red cards", "eventNum":3, "probability":0.48}
- {_id:5, "type":"die", "experimentId":"r16", "description":"Roll a 1 then a 6", "eventNum":1, "probability":0.16666666666667}
- {_id:6, "type":"die", "experimentId":"r16", "description":"Roll a 1 then a 6", "eventNum":2, "probability":0.16666666666667}
- {_id:7, "type":"card", "experimentId":"dak", "description":"Draw an ace, then a king", "eventNum":1, "probability":0.07692307692308}
- {_id:8, "type":"card", "experimentId":"dak", "description":"Draw an ace, then a king", "eventNum":2, "probability":0.07843137254902}
Steps:
- Use
$group
to group by theexperimentId
and use$push
tocreate an array with the probability of each event. - Use
$reduce
with$multiply
to multiply and combine theelements ofprobabilityArr
into a single value and project it.
- db.probability.aggregate(
- [
- {
- $group: {
- _id: "$experimentId",
- "probabilityArr": { $push: "$probability" }
- }
- },
- {
- $project: {
- "description": 1,
- "results": {
- $reduce: {
- input: "$probabilityArr",
- initialValue: 1,
- in: { $multiply: [ "$$value", "$$this" ] }
- }
- }
- }
- }
- ]
- )
The operation returns the following:
- { "_id" : "dak", "results" : 0.00603318250377101 }
- { "_id" : "r5", "results" : 0.16666666666667 }
- { "_id" : "r16", "results" : 0.027777777777778886 }
- { "_id" : "d3rc", "results" : 0.11764705882352879 }
Discounted Merchandise
A collection named clothes
contains the following documents:
- { "_id" : 1, "productId" : "ts1", "description" : "T-Shirt", "color" : "black", "size" : "M", "price" : 20, "discounts" : [ 0.5, 0.1 ] }
- { "_id" : 2, "productId" : "j1", "description" : "Jeans", "color" : "blue", "size" : "36", "price" : 40, "discounts" : [ 0.25, 0.15, 0.05 ] }
- { "_id" : 3, "productId" : "s1", "description" : "Shorts", "color" : "beige", "size" : "32", "price" : 30, "discounts" : [ 0.15, 0.05 ] }
- { "_id" : 4, "productId" : "ts2", "description" : "Cool T-Shirt", "color" : "White", "size" : "L", "price" : 25, "discounts" : [ 0.3 ] }
- { "_id" : 5, "productId" : "j2", "description" : "Designer Jeans", "color" : "blue", "size" : "30", "price" : 80, "discounts" : [ 0.1, 0.25 ] }
Each document contains a discounts
array containing the currentlyavailable percent-off coupons for each item. If each discount can beapplied to the product once, we can calculate the lowest price by using$reduce
to apply the following formula for each element in thediscounts
array: (1 - discount) * price.
- db.clothes.aggregate(
- [
- {
- $project: {
- "discountedPrice": {
- $reduce: {
- input: "$discounts",
- initialValue: "$price",
- in: { $multiply: [ "$$value", { $subtract: [ 1, "$$this" ] } ] }
- }
- }
- }
- }
- ]
- )
The operation returns the following:
- { "_id" : ObjectId("57c893067054e6e47674ce01"), "discountedPrice" : 9 }
- { "_id" : ObjectId("57c9932b7054e6e47674ce12"), "discountedPrice" : 24.224999999999998 }
- { "_id" : ObjectId("57c993457054e6e47674ce13"), "discountedPrice" : 24.224999999999998 }
- { "_id" : ObjectId("57c993687054e6e47674ce14"), "discountedPrice" : 17.5 }
- { "_id" : ObjectId("57c993837054e6e47674ce15"), "discountedPrice" : 54 }
String Concatenation
A collection named people
contains the following documents:
- { "_id" : 1, "name" : "Melissa", "hobbies" : [ "softball", "drawing", "reading" ] }
- { "_id" : 2, "name" : "Brad", "hobbies" : [ "gaming", "skateboarding" ] }
- { "_id" : 3, "name" : "Scott", "hobbies" : [ "basketball", "music", "fishing" ] }
- { "_id" : 4, "name" : "Tracey", "hobbies" : [ "acting", "yoga" ] }
- { "_id" : 5, "name" : "Josh", "hobbies" : [ "programming" ] }
- { "_id" : 6, "name" : "Claire" }
The following example reduces the hobbies
array of strings into a single stringbio
:
- db.people.aggregate(
- [
- // Filter to return only non-empty arrays
- { $match: { "hobbies": { $gt: [ ] } } },
- {
- $project: {
- "name": 1,
- "bio": {
- $reduce: {
- input: "$hobbies",
- initialValue: "My hobbies include:",
- in: {
- $concat: [
- "$$value",
- {
- $cond: {
- if: { $eq: [ "$$value", "My hobbies include:" ] },
- then: " ",
- else: ", "
- }
- },
- "$$this"
- ]
- }
- }
- }
- }
- }
- ]
- )
The operation returns the following:
- { "_id" : 1, "name" : "Melissa", "bio" : "My hobbies include: softball, drawing, reading" }
- { "_id" : 2, "name" : "Brad", "bio" : "My hobbies include: gaming, skateboarding" }
- { "_id" : 3, "name" : "Scott", "bio" : "My hobbies include: basketball, music, fishing" }
- { "_id" : 4, "name" : "Tracey", "bio" : "My hobbies include: acting, yoga" }
- { "_id" : 5, "name" : "Josh", "bio" : "My hobbies include: programming" }
Array Concatenation
A collection named matrices
contains the following documents:
- { "_id" : 1, "arr" : [ [ 24, 55, 79 ], [ 14, 78, 35 ], [ 84, 90, 3 ], [ 50, 89, 70 ] ] }
- { "_id" : 2, "arr" : [ [ 39, 32, 43, 7 ], [ 62, 17, 80, 64 ], [ 17, 88, 11, 73 ] ] }
- { "_id" : 3, "arr" : [ [ 42 ], [ 26, 59 ], [ 17 ], [ 72, 19, 35 ] ] }
- { "_id" : 4 }
Computing a Single Reduction
The following example collapses the two dimensional arrays into a single array collapsed
:
- db.arrayconcat.aggregate(
- [
- {
- $project: {
- "collapsed": {
- $reduce: {
- input: "$arr",
- initialValue: [ ],
- in: { $concatArrays: [ "$$value", "$$this" ] }
- }
- }
- }
- }
- ]
- )
The operation returns the following:
- { "_id" : 1, "collapsed" : [ 24, 55, 79, 14, 78, 35, 84, 90, 3, 50, 89, 70 ] }
- { "_id" : 2, "collapsed" : [ 39, 32, 43, 7, 62, 17, 80, 64, 17, 88, 11, 73 ] }
- { "_id" : 3, "collapsed" : [ 42, 26, 59, 17, 72, 19, 35 ] }
- { "_id" : 4, "collapsed" : null }
Computing a Multiple Reductions
The following example performs the same two dimensional array collapse as the example above, but alsocreates a new array containing only the first element of each array.
- db.arrayconcat.aggregate(
- [
- {
- $project: {
- "results": {
- $reduce: {
- input: "$arr",
- initialValue: [ ],
- in: {
- "collapsed": {
- $concatArrays: [ "$$value.collapsed", "$$this" ]
- },
- "firstValues": {
- $concatArrays: [ "$$value.firstValues", { $slice: [ "$$this", 1 ] } ]
- }
- }
- }
- }
- }
- }
- ]
- )
The operation returns the following:
- { "_id" : 1, "results" : { "collapsed" : [ 24, 55, 79, 14, 78, 35, 84, 90, 3, 50, 89, 70 ], "firstValues" : [ 24, 14, 84, 50 ] } }
- { "_id" : 2, "results" : { "collapsed" : [ 39, 32, 43, 7, 62, 17, 80, 64, 17, 88, 11, 73 ], "firstValues" : [ 39, 62, 17 ] } }
- { "_id" : 3, "results" : { "collapsed" : [ 42, 26, 59, 17, 72, 19, 35 ], "firstValues" : [ 42, 26, 17, 72 ] } }
- { "_id" : 4, "results" : null }