Creating a Windows MachineSet object on GCP

You can create a Windows MachineSet object to serve a specific purpose in your OKD cluster on Google Cloud Platform (GCP). For example, you might create infrastructure Windows machine sets and related machines so that you can move supporting Windows workloads to the new Windows machines.

Prerequisites

  • You installed the Windows Machine Config Operator (WMCO) using Operator Lifecycle Manager (OLM).

  • You are using a supported Windows Server as the operating system image.

Machine API overview

The Machine API is a combination of primary resources that are based on the upstream Cluster API project and custom OKD resources.

For OKD 4.12 clusters, the Machine API performs all node host provisioning management actions after the cluster installation finishes. Because of this system, OKD 4.12 offers an elastic, dynamic provisioning method on top of public or private cloud infrastructure.

The two primary resources are:

Machines

A fundamental unit that describes the host for a node. A machine has a providerSpec specification, which describes the types of compute nodes that are offered for different cloud platforms. For example, a machine type for a worker node on Amazon Web Services (AWS) might define a specific machine type and required metadata.

Machine sets

MachineSet resources are groups of compute machines. Compute machine sets are to compute machines as replica sets are to pods. If you need more compute machines or must scale them down, you change the replicas field on the MachineSet resource to meet your compute need.

Control plane machines cannot be managed by compute machine sets.

Control plane machine sets provide management capabilities for supported control plane machines that are similar to what compute machine sets provide for compute machines.

For more information, see “Managing control plane machines”.

The following custom resources add more capabilities to your cluster:

Machine autoscaler

The MachineAutoscaler resource automatically scales compute machines in a cloud. You can set the minimum and maximum scaling boundaries for nodes in a specified compute machine set, and the machine autoscaler maintains that range of nodes.

The MachineAutoscaler object takes effect after a ClusterAutoscaler object exists. Both ClusterAutoscaler and MachineAutoscaler resources are made available by the ClusterAutoscalerOperator object.

Cluster autoscaler

This resource is based on the upstream cluster autoscaler project. In the OKD implementation, it is integrated with the Machine API by extending the compute machine set API. You can use the cluster autoscaler to manage your cluster in the following ways:

  • Set cluster-wide scaling limits for resources such as cores, nodes, memory, and GPU

  • Set the priority so that the cluster prioritizes pods and new nodes are not brought online for less important pods

  • Set the scaling policy so that you can scale up nodes but not scale them down

Machine health check

The MachineHealthCheck resource detects when a machine is unhealthy, deletes it, and, on supported platforms, makes a new machine.

In OKD version 3.11, you could not roll out a multi-zone architecture easily because the cluster did not manage machine provisioning. Beginning with OKD version 4.1, this process is easier. Each compute machine set is scoped to a single zone, so the installation program sends out compute machine sets across availability zones on your behalf. And then because your compute is dynamic, and in the face of a zone failure, you always have a zone for when you must rebalance your machines. In global Azure regions that do not have multiple availability zones, you can use availability sets to ensure high availability. The autoscaler provides best-effort balancing over the life of a cluster.

Sample YAML for a Windows MachineSet object on GCP

This sample YAML file defines a Windows MachineSet object running on Google Cloud Platform (GCP) that the Windows Machine Config Operator (WMCO) can use.

  1. apiVersion: machine.openshift.io/v1beta1
  2. kind: MachineSet
  3. metadata:
  4. labels:
  5. machine.openshift.io/cluster-api-cluster: <infrastructure_id> (1)
  6. name: <infrastructure_id>-windows-worker-<zone_suffix> (2)
  7. namespace: openshift-machine-api
  8. spec:
  9. replicas: 1
  10. selector:
  11. matchLabels:
  12. machine.openshift.io/cluster-api-cluster: <infrastructure_id> (1)
  13. machine.openshift.io/cluster-api-machineset: <infrastructure_id>-windows-worker-<zone_suffix> (2)
  14. template:
  15. metadata:
  16. labels:
  17. machine.openshift.io/cluster-api-cluster: <infrastructure_id> (1)
  18. machine.openshift.io/cluster-api-machine-role: worker
  19. machine.openshift.io/cluster-api-machine-type: worker
  20. machine.openshift.io/cluster-api-machineset: <infrastructure_id>-windows-worker-<zone_suffix> (2)
  21. machine.openshift.io/os-id: Windows (3)
  22. spec:
  23. metadata:
  24. labels:
  25. node-role.kubernetes.io/worker: "" (4)
  26. providerSpec:
  27. value:
  28. apiVersion: machine.openshift.io/v1beta1
  29. canIPForward: false
  30. credentialsSecret:
  31. name: gcp-cloud-credentials
  32. deletionProtection: false
  33. disks:
  34. - autoDelete: true
  35. boot: true
  36. image: <windows_server_image> (5)
  37. sizeGb: 128
  38. type: pd-ssd
  39. kind: GCPMachineProviderSpec
  40. machineType: n1-standard-4
  41. networkInterfaces:
  42. - network: <infrastructure_id>-network (1)
  43. subnetwork: <infrastructure_id>-worker-subnet
  44. projectID: <project_id> (6)
  45. region: <region> (7)
  46. serviceAccounts:
  47. - email: <infrastructure_id>-w@<project_id>.iam.gserviceaccount.com
  48. scopes:
  49. - https://www.googleapis.com/auth/cloud-platform
  50. tags:
  51. - <infrastructure_id>-worker
  52. userDataSecret:
  53. name: windows-user-data (8)
  54. zone: <zone> (9)
1Specify the infrastructure ID that is based on the cluster ID that you set when you provisioned the cluster. You can obtain the infrastructure ID by running the following command:
  1. $ oc get -o jsonpath=’{.status.infrastructureName}{“\n”}’ infrastructure cluster
2Specify the infrastructure ID, worker label, and zone suffix (such as a).
3Configure the machine set as a Windows machine.
4Configure the Windows node as a compute machine.
5Specify the full path to an image of a supported version of Windows Server.
6Specify the GCP project that this cluster was created in.
7Specify the GCP region, such as us-central1.
8Created by the WMCO when it configures the first Windows machine. After that, the windows-user-data is available for all subsequent machine sets to consume.
9Specify the zone within the chosen region, such as us-central1-a.

Creating a compute machine set

In addition to the ones created by the installation program, you can create your own compute machine sets to dynamically manage the machine compute resources for specific workloads of your choice.

Prerequisites

  • Deploy an OKD cluster.

  • Install the OpenShift CLI (oc).

  • Log in to oc as a user with cluster-admin permission.

Procedure

  1. Create a new YAML file that contains the compute machine set custom resource (CR) sample and is named <file_name>.yaml.

    Ensure that you set the <clusterID> and <role> parameter values.

    1. If you are not sure which value to set for a specific field, you can check an existing compute machine set from your cluster:

      1. $ oc get machinesets -n openshift-machine-api

      Example output

      1. NAME DESIRED CURRENT READY AVAILABLE AGE
      2. agl030519-vplxk-worker-us-east-1a 1 1 1 1 55m
      3. agl030519-vplxk-worker-us-east-1b 1 1 1 1 55m
      4. agl030519-vplxk-worker-us-east-1c 1 1 1 1 55m
      5. agl030519-vplxk-worker-us-east-1d 0 0 55m
      6. agl030519-vplxk-worker-us-east-1e 0 0 55m
      7. agl030519-vplxk-worker-us-east-1f 0 0 55m
    2. Check values of a specific compute machine set:

      1. $ oc get machineset <machineset_name> -n \
      2. openshift-machine-api -o yaml

      Example output

      1. ...
      2. template:
      3. metadata:
      4. labels:
      5. machine.openshift.io/cluster-api-cluster: agl030519-vplxk (1)
      6. machine.openshift.io/cluster-api-machine-role: worker (2)
      7. machine.openshift.io/cluster-api-machine-type: worker
      8. machine.openshift.io/cluster-api-machineset: agl030519-vplxk-worker-us-east-1a
      1The cluster ID.
      2A default node label.
  2. Create the new MachineSet CR:

    1. $ oc create -f <file_name>.yaml
  3. View the list of compute machine sets:

    1. $ oc get machineset -n openshift-machine-api

    Example output

    1. NAME DESIRED CURRENT READY AVAILABLE AGE
    2. agl030519-vplxk-infra-us-east-1a 1 1 1 1 11m
    3. agl030519-vplxk-worker-us-east-1a 1 1 1 1 55m
    4. agl030519-vplxk-worker-us-east-1b 1 1 1 1 55m
    5. agl030519-vplxk-worker-us-east-1c 1 1 1 1 55m
    6. agl030519-vplxk-worker-us-east-1d 0 0 55m
    7. agl030519-vplxk-worker-us-east-1e 0 0 55m
    8. agl030519-vplxk-worker-us-east-1f 0 0 55m

    When the new compute machine set is available, the DESIRED and CURRENT values match. If the compute machine set is not available, wait a few minutes and run the command again.

Additional resources