Suggesters
Suggesters
Suggests similar looking terms based on a provided text by using a suggester.
New API reference
For the most up-to-date API details, refer to Search APIs.
resp = client.search(
index="my-index-000001",
query={
"match": {
"message": "tring out Elasticsearch"
}
},
suggest={
"my-suggestion": {
"text": "tring out Elasticsearch",
"term": {
"field": "message"
}
}
},
)
print(resp)
response = client.search(
index: 'my-index-000001',
body: {
query: {
match: {
message: 'tring out Elasticsearch'
}
},
suggest: {
"my-suggestion": {
text: 'tring out Elasticsearch',
term: {
field: 'message'
}
}
}
}
)
puts response
const response = await client.search({
index: "my-index-000001",
query: {
match: {
message: "tring out Elasticsearch",
},
},
suggest: {
"my-suggestion": {
text: "tring out Elasticsearch",
term: {
field: "message",
},
},
},
});
console.log(response);
POST my-index-000001/_search
{
"query" : {
"match": {
"message": "tring out Elasticsearch"
}
},
"suggest" : {
"my-suggestion" : {
"text" : "tring out Elasticsearch",
"term" : {
"field" : "message"
}
}
}
}
Request
The suggest feature suggests similar looking terms based on a provided text by using a suggester. The suggest request part is defined alongside the query part in a _search
request. If the query part is left out, only suggestions are returned.
Examples
Several suggestions can be specified per request. Each suggestion is identified with an arbitrary name. In the example below two suggestions are requested. Both my-suggest-1
and my-suggest-2
suggestions use the term
suggester, but have a different text
.
resp = client.search(
suggest={
"my-suggest-1": {
"text": "tring out Elasticsearch",
"term": {
"field": "message"
}
},
"my-suggest-2": {
"text": "kmichy",
"term": {
"field": "user.id"
}
}
},
)
print(resp)
response = client.search(
body: {
suggest: {
"my-suggest-1": {
text: 'tring out Elasticsearch',
term: {
field: 'message'
}
},
"my-suggest-2": {
text: 'kmichy',
term: {
field: 'user.id'
}
}
}
}
)
puts response
const response = await client.search({
suggest: {
"my-suggest-1": {
text: "tring out Elasticsearch",
term: {
field: "message",
},
},
"my-suggest-2": {
text: "kmichy",
term: {
field: "user.id",
},
},
},
});
console.log(response);
POST _search
{
"suggest": {
"my-suggest-1" : {
"text" : "tring out Elasticsearch",
"term" : {
"field" : "message"
}
},
"my-suggest-2" : {
"text" : "kmichy",
"term" : {
"field" : "user.id"
}
}
}
}
The below suggest response example includes the suggestion response for my-suggest-1
and my-suggest-2
. Each suggestion part contains entries. Each entry is effectively a token from the suggest text and contains the suggestion entry text, the original start offset and length in the suggest text and if found an arbitrary number of options.
{
"_shards": ...
"hits": ...
"took": 2,
"timed_out": false,
"suggest": {
"my-suggest-1": [ {
"text": "tring",
"offset": 0,
"length": 5,
"options": [ {"text": "trying", "score": 0.8, "freq": 1 } ]
}, {
"text": "out",
"offset": 6,
"length": 3,
"options": []
}, {
"text": "elasticsearch",
"offset": 10,
"length": 13,
"options": []
} ],
"my-suggest-2": ...
}
}
Each options array contains an option object that includes the suggested text, its document frequency and score compared to the suggest entry text. The meaning of the score depends on the used suggester. The term suggester’s score is based on the edit distance.
Global suggest text
To avoid repetition of the suggest text, it is possible to define a global text. In the example below the suggest text is defined globally and applies to the my-suggest-1
and my-suggest-2
suggestions.
$params = [
'body' => [
'suggest' => [
'text' => 'tring out Elasticsearch',
'my-suggest-1' => [
'term' => [
'field' => 'message',
],
],
'my-suggest-2' => [
'term' => [
'field' => 'user',
],
],
],
],
];
$response = $client->search($params);
resp = client.search(
suggest={
"text": "tring out Elasticsearch",
"my-suggest-1": {
"term": {
"field": "message"
}
},
"my-suggest-2": {
"term": {
"field": "user"
}
}
},
)
print(resp)
response = client.search(
body: {
suggest: {
text: 'tring out Elasticsearch',
"my-suggest-1": {
term: {
field: 'message'
}
},
"my-suggest-2": {
term: {
field: 'user'
}
}
}
}
)
puts response
res, err := es.Search(
es.Search.WithBody(strings.NewReader(`{
"suggest": {
"text": "tring out Elasticsearch",
"my-suggest-1": {
"term": {
"field": "message"
}
},
"my-suggest-2": {
"term": {
"field": "user"
}
}
}
}`)),
es.Search.WithPretty(),
)
fmt.Println(res, err)
const response = await client.search({
suggest: {
text: "tring out Elasticsearch",
"my-suggest-1": {
term: {
field: "message",
},
},
"my-suggest-2": {
term: {
field: "user",
},
},
},
});
console.log(response);
POST _search
{
"suggest": {
"text" : "tring out Elasticsearch",
"my-suggest-1" : {
"term" : {
"field" : "message"
}
},
"my-suggest-2" : {
"term" : {
"field" : "user"
}
}
}
}
The suggest text can in the above example also be specified as suggestion specific option. The suggest text specified on suggestion level override the suggest text on the global level.
Term suggester
The term
suggester suggests terms based on edit distance. The provided suggest text is analyzed before terms are suggested. The suggested terms are provided per analyzed suggest text token. The term
suggester doesn’t take the query into account that is part of request.
Common suggest options:
| The suggest text. The suggest text is a required option that needs to be set globally or per suggestion. |
| The field to fetch the candidate suggestions from. This is a required option that either needs to be set globally or per suggestion. |
| The analyzer to analyse the suggest text with. Defaults to the search analyzer of the suggest field. |
| The maximum corrections to be returned per suggest text token. |
| Defines how suggestions should be sorted per suggest text term. Two possible values:
|
| The suggest mode controls what suggestions are included or controls for what suggest text terms, suggestions should be suggested. Three possible values can be specified:
|
Other term suggest options:
| The maximum edit distance candidate suggestions can have in order to be considered as a suggestion. Can only be a value between 1 and 2. Any other value results in a bad request error being thrown. Defaults to 2. |
| The number of minimal prefix characters that must match in order be a candidate for suggestions. Defaults to 1. Increasing this number improves spellcheck performance. Usually misspellings don’t occur in the beginning of terms. |
| The minimum length a suggest text term must have in order to be included. Defaults to |
| Sets the maximum number of suggestions to be retrieved from each individual shard. During the reduce phase only the top N suggestions are returned based on the |
| A factor that is used to multiply with the |
| The minimal threshold in number of documents a suggestion should appear in. This can be specified as an absolute number or as a relative percentage of number of documents. This can improve quality by only suggesting high frequency terms. Defaults to 0f and is not enabled. If a value higher than 1 is specified, then the number cannot be fractional. The shard level document frequencies are used for this option. |
| The maximum threshold in number of documents in which a suggest text token can exist in order to be included. Can be a relative percentage number (e.g., 0.4) or an absolute number to represent document frequencies. If a value higher than 1 is specified, then fractional can not be specified. Defaults to 0.01f. This can be used to exclude high frequency terms — which are usually spelled correctly — from being spellchecked. This also improves the spellcheck performance. The shard level document frequencies are used for this option. |
| Which string distance implementation to use for comparing how similar suggested terms are. Five possible values can be specified:
|
Phrase Suggester
The term
suggester provides a very convenient API to access word alternatives on a per token basis within a certain string distance. The API allows accessing each token in the stream individually while suggest-selection is left to the API consumer. Yet, often pre-selected suggestions are required in order to present to the end-user. The phrase
suggester adds additional logic on top of the term
suggester to select entire corrected phrases instead of individual tokens weighted based on ngram-language
models. In practice this suggester will be able to make better decisions about which tokens to pick based on co-occurrence and frequencies.
API Example
In general the phrase
suggester requires special mapping up front to work. The phrase
suggester examples on this page need the following mapping to work. The reverse
analyzer is used only in the last example.
resp = client.indices.create(
index="test",
settings={
"index": {
"number_of_shards": 1,
"analysis": {
"analyzer": {
"trigram": {
"type": "custom",
"tokenizer": "standard",
"filter": [
"lowercase",
"shingle"
]
},
"reverse": {
"type": "custom",
"tokenizer": "standard",
"filter": [
"lowercase",
"reverse"
]
}
},
"filter": {
"shingle": {
"type": "shingle",
"min_shingle_size": 2,
"max_shingle_size": 3
}
}
}
}
},
mappings={
"properties": {
"title": {
"type": "text",
"fields": {
"trigram": {
"type": "text",
"analyzer": "trigram"
},
"reverse": {
"type": "text",
"analyzer": "reverse"
}
}
}
}
},
)
print(resp)
resp1 = client.index(
index="test",
refresh=True,
document={
"title": "noble warriors"
},
)
print(resp1)
resp2 = client.index(
index="test",
refresh=True,
document={
"title": "nobel prize"
},
)
print(resp2)
response = client.indices.create(
index: 'test',
body: {
settings: {
index: {
number_of_shards: 1,
analysis: {
analyzer: {
trigram: {
type: 'custom',
tokenizer: 'standard',
filter: [
'lowercase',
'shingle'
]
},
reverse: {
type: 'custom',
tokenizer: 'standard',
filter: [
'lowercase',
'reverse'
]
}
},
filter: {
shingle: {
type: 'shingle',
min_shingle_size: 2,
max_shingle_size: 3
}
}
}
}
},
mappings: {
properties: {
title: {
type: 'text',
fields: {
trigram: {
type: 'text',
analyzer: 'trigram'
},
reverse: {
type: 'text',
analyzer: 'reverse'
}
}
}
}
}
}
)
puts response
response = client.index(
index: 'test',
refresh: true,
body: {
title: 'noble warriors'
}
)
puts response
response = client.index(
index: 'test',
refresh: true,
body: {
title: 'nobel prize'
}
)
puts response
const response = await client.indices.create({
index: "test",
settings: {
index: {
number_of_shards: 1,
analysis: {
analyzer: {
trigram: {
type: "custom",
tokenizer: "standard",
filter: ["lowercase", "shingle"],
},
reverse: {
type: "custom",
tokenizer: "standard",
filter: ["lowercase", "reverse"],
},
},
filter: {
shingle: {
type: "shingle",
min_shingle_size: 2,
max_shingle_size: 3,
},
},
},
},
},
mappings: {
properties: {
title: {
type: "text",
fields: {
trigram: {
type: "text",
analyzer: "trigram",
},
reverse: {
type: "text",
analyzer: "reverse",
},
},
},
},
},
});
console.log(response);
const response1 = await client.index({
index: "test",
refresh: "true",
document: {
title: "noble warriors",
},
});
console.log(response1);
const response2 = await client.index({
index: "test",
refresh: "true",
document: {
title: "nobel prize",
},
});
console.log(response2);
PUT test
{
"settings": {
"index": {
"number_of_shards": 1,
"analysis": {
"analyzer": {
"trigram": {
"type": "custom",
"tokenizer": "standard",
"filter": ["lowercase","shingle"]
},
"reverse": {
"type": "custom",
"tokenizer": "standard",
"filter": ["lowercase","reverse"]
}
},
"filter": {
"shingle": {
"type": "shingle",
"min_shingle_size": 2,
"max_shingle_size": 3
}
}
}
}
},
"mappings": {
"properties": {
"title": {
"type": "text",
"fields": {
"trigram": {
"type": "text",
"analyzer": "trigram"
},
"reverse": {
"type": "text",
"analyzer": "reverse"
}
}
}
}
}
}
POST test/_doc?refresh=true
{"title": "noble warriors"}
POST test/_doc?refresh=true
{"title": "nobel prize"}
Once you have the analyzers and mappings set up you can use the phrase
suggester in the same spot you’d use the term
suggester:
resp = client.search(
index="test",
suggest={
"text": "noble prize",
"simple_phrase": {
"phrase": {
"field": "title.trigram",
"size": 1,
"gram_size": 3,
"direct_generator": [
{
"field": "title.trigram",
"suggest_mode": "always"
}
],
"highlight": {
"pre_tag": "<em>",
"post_tag": "</em>"
}
}
}
},
)
print(resp)
const response = await client.search({
index: "test",
suggest: {
text: "noble prize",
simple_phrase: {
phrase: {
field: "title.trigram",
size: 1,
gram_size: 3,
direct_generator: [
{
field: "title.trigram",
suggest_mode: "always",
},
],
highlight: {
pre_tag: "<em>",
post_tag: "</em>",
},
},
},
},
});
console.log(response);
POST test/_search
{
"suggest": {
"text": "noble prize",
"simple_phrase": {
"phrase": {
"field": "title.trigram",
"size": 1,
"gram_size": 3,
"direct_generator": [ {
"field": "title.trigram",
"suggest_mode": "always"
} ],
"highlight": {
"pre_tag": "<em>",
"post_tag": "</em>"
}
}
}
}
}
The response contains suggestions scored by the most likely spelling correction first. In this case we received the expected correction “nobel prize”.
{
"_shards": ...
"hits": ...
"timed_out": false,
"took": 3,
"suggest": {
"simple_phrase" : [
{
"text" : "noble prize",
"offset" : 0,
"length" : 11,
"options" : [ {
"text" : "nobel prize",
"highlighted": "<em>nobel</em> prize",
"score" : 0.48614594
}]
}
]
}
}
Basic Phrase suggest API parameters
| The name of the field used to do n-gram lookups for the language model, the suggester will use this field to gain statistics to score corrections. This field is mandatory. |
| Sets max size of the n-grams (shingles) in the |
| The likelihood of a term being misspelled even if the term exists in the dictionary. The default is |
| The confidence level defines a factor applied to the input phrases score which is used as a threshold for other suggest candidates. Only candidates that score higher than the threshold will be included in the result. For instance a confidence level of |
| The maximum percentage of the terms considered to be misspellings in order to form a correction. This method accepts a float value in the range |
| The separator that is used to separate terms in the bigram field. If not set the whitespace character is used as a separator. |
| The number of candidates that are generated for each individual query term. Low numbers like |
| Sets the analyzer to analyze to suggest text with. Defaults to the search analyzer of the suggest field passed via |
| Sets the maximum number of suggested terms to be retrieved from each individual shard. During the reduce phase, only the top N suggestions are returned based on the |
| Sets the text / query to provide suggestions for. |
| Sets up suggestion highlighting. If not provided then no |
| Checks each suggestion against the specified |
resp = client.search(
index="test",
suggest={
"text": "noble prize",
"simple_phrase": {
"phrase": {
"field": "title.trigram",
"size": 1,
"direct_generator": [
{
"field": "title.trigram",
"suggest_mode": "always",
"min_word_length": 1
}
],
"collate": {
"query": {
"source": {
"match": {
"{{field_name}}": "{{suggestion}}"
}
}
},
"params": {
"field_name": "title"
},
"prune": True
}
}
}
},
)
print(resp)
const response = await client.search({
index: "test",
suggest: {
text: "noble prize",
simple_phrase: {
phrase: {
field: "title.trigram",
size: 1,
direct_generator: [
{
field: "title.trigram",
suggest_mode: "always",
min_word_length: 1,
},
],
collate: {
query: {
source: {
match: {
"{{field_name}}": "{{suggestion}}",
},
},
},
params: {
field_name: "title",
},
prune: true,
},
},
},
},
});
console.log(response);
POST test/_search
{
"suggest": {
"text" : "noble prize",
"simple_phrase" : {
"phrase" : {
"field" : "title.trigram",
"size" : 1,
"direct_generator" : [ {
"field" : "title.trigram",
"suggest_mode" : "always",
"min_word_length" : 1
} ],
"collate": {
"query": {
"source" : {
"match": {
"{{field_name}}" : "{{suggestion}}"
}
}
},
"params": {"field_name" : "title"},
"prune": true
}
}
}
}
}
This query will be run once for every suggestion. | |
The | |
An additional | |
All suggestions will be returned with an extra |
Smoothing Models
The phrase
suggester supports multiple smoothing models to balance weight between infrequent grams (grams (shingles) are not existing in the index) and frequent grams (appear at least once in the index). The smoothing model can be selected by setting the smoothing
parameter to one of the following options. Each smoothing model supports specific properties that can be configured.
| A simple backoff model that backs off to lower order n-gram models if the higher order count is |
| A smoothing model that uses an additive smoothing where a constant (typically |
| A smoothing model that takes the weighted mean of the unigrams, bigrams, and trigrams based on user supplied weights (lambdas). Linear Interpolation doesn’t have any default values. All parameters ( |
resp = client.search(
index="test",
suggest={
"text": "obel prize",
"simple_phrase": {
"phrase": {
"field": "title.trigram",
"size": 1,
"smoothing": {
"laplace": {
"alpha": 0.7
}
}
}
}
},
)
print(resp)
const response = await client.search({
index: "test",
suggest: {
text: "obel prize",
simple_phrase: {
phrase: {
field: "title.trigram",
size: 1,
smoothing: {
laplace: {
alpha: 0.7,
},
},
},
},
},
});
console.log(response);
POST test/_search
{
"suggest": {
"text" : "obel prize",
"simple_phrase" : {
"phrase" : {
"field" : "title.trigram",
"size" : 1,
"smoothing" : {
"laplace" : {
"alpha" : 0.7
}
}
}
}
}
}
Candidate Generators
The phrase
suggester uses candidate generators to produce a list of possible terms per term in the given text. A single candidate generator is similar to a term
suggester called for each individual term in the text. The output of the generators is subsequently scored in combination with the candidates from the other terms for suggestion candidates.
Currently only one type of candidate generator is supported, the direct_generator
. The Phrase suggest API accepts a list of generators under the key direct_generator
; each of the generators in the list is called per term in the original text.
Direct Generators
The direct generators support the following parameters:
| The field to fetch the candidate suggestions from. This is a required option that either needs to be set globally or per suggestion. |
| The maximum corrections to be returned per suggest text token. |
| The suggest mode controls what suggestions are included on the suggestions generated on each shard. All values other than
|
| The maximum edit distance candidate suggestions can have in order to be considered as a suggestion. Can only be a value between 1 and 2. Any other value results in a bad request error being thrown. Defaults to 2. |
| The number of minimal prefix characters that must match in order be a candidate suggestions. Defaults to 1. Increasing this number improves spellcheck performance. Usually misspellings don’t occur in the beginning of terms. |
| The minimum length a suggest text term must have in order to be included. Defaults to 4. |
| A factor that is used to multiply with the |
| The minimal threshold in number of documents a suggestion should appear in. This can be specified as an absolute number or as a relative percentage of number of documents. This can improve quality by only suggesting high frequency terms. Defaults to 0f and is not enabled. If a value higher than 1 is specified, then the number cannot be fractional. The shard level document frequencies are used for this option. |
| The maximum threshold in number of documents in which a suggest text token can exist in order to be included. Can be a relative percentage number (e.g., 0.4) or an absolute number to represent document frequencies. If a value higher than 1 is specified, then fractional can not be specified. Defaults to 0.01f. This can be used to exclude high frequency terms — which are usually spelled correctly — from being spellchecked. This also improves the spellcheck performance. The shard level document frequencies are used for this option. |
| A filter (analyzer) that is applied to each of the tokens passed to this candidate generator. This filter is applied to the original token before candidates are generated. |
| A filter (analyzer) that is applied to each of the generated tokens before they are passed to the actual phrase scorer. |
The following example shows a phrase
suggest call with two generators: the first one is using a field containing ordinary indexed terms, and the second one uses a field that uses terms indexed with a reverse
filter (tokens are index in reverse order). This is used to overcome the limitation of the direct generators to require a constant prefix to provide high-performance suggestions. The pre_filter
and post_filter
options accept ordinary analyzer names.
resp = client.search(
index="test",
suggest={
"text": "obel prize",
"simple_phrase": {
"phrase": {
"field": "title.trigram",
"size": 1,
"direct_generator": [
{
"field": "title.trigram",
"suggest_mode": "always"
},
{
"field": "title.reverse",
"suggest_mode": "always",
"pre_filter": "reverse",
"post_filter": "reverse"
}
]
}
}
},
)
print(resp)
const response = await client.search({
index: "test",
suggest: {
text: "obel prize",
simple_phrase: {
phrase: {
field: "title.trigram",
size: 1,
direct_generator: [
{
field: "title.trigram",
suggest_mode: "always",
},
{
field: "title.reverse",
suggest_mode: "always",
pre_filter: "reverse",
post_filter: "reverse",
},
],
},
},
},
});
console.log(response);
POST test/_search
{
"suggest": {
"text" : "obel prize",
"simple_phrase" : {
"phrase" : {
"field" : "title.trigram",
"size" : 1,
"direct_generator" : [ {
"field" : "title.trigram",
"suggest_mode" : "always"
}, {
"field" : "title.reverse",
"suggest_mode" : "always",
"pre_filter" : "reverse",
"post_filter" : "reverse"
} ]
}
}
}
}
pre_filter
and post_filter
can also be used to inject synonyms after candidates are generated. For instance for the query captain usq
we might generate a candidate usa
for the term usq
, which is a synonym for america
. This allows us to present captain america
to the user if this phrase scores high enough.
Completion Suggester
The completion
suggester provides auto-complete/search-as-you-type functionality. This is a navigational feature to guide users to relevant results as they are typing, improving search precision. It is not meant for spell correction or did-you-mean functionality like the term
or phrase
suggesters.
Ideally, auto-complete functionality should be as fast as a user types to provide instant feedback relevant to what a user has already typed in. Hence, completion
suggester is optimized for speed. The suggester uses data structures that enable fast lookups, but are costly to build and are stored in-memory.
Mapping
To use the completion suggester, map the field from which you want to generate suggestions as type completion
. This indexes the field values for fast completions.
resp = client.indices.create(
index="music",
mappings={
"properties": {
"suggest": {
"type": "completion"
}
}
},
)
print(resp)
response = client.indices.create(
index: 'music',
body: {
mappings: {
properties: {
suggest: {
type: 'completion'
}
}
}
}
)
puts response
const response = await client.indices.create({
index: "music",
mappings: {
properties: {
suggest: {
type: "completion",
},
},
},
});
console.log(response);
PUT music
{
"mappings": {
"properties": {
"suggest": {
"type": "completion"
}
}
}
}
Parameters for completion
fields
The following parameters are accepted by completion
fields:
The index analyzer to use, defaults to | |
The search analyzer to use, defaults to value of | |
| Preserves the separators, defaults to |
| Enables position increments, defaults to |
| Limits the length of a single input, defaults to |
Indexing
You index suggestions like any other field. A suggestion is made of an input
and an optional weight
attribute. An input
is the expected text to be matched by a suggestion query and the weight
determines how the suggestions will be scored. Indexing a suggestion is as follows:
resp = client.index(
index="music",
id="1",
refresh=True,
document={
"suggest": {
"input": [
"Nevermind",
"Nirvana"
],
"weight": 34
}
},
)
print(resp)
response = client.index(
index: 'music',
id: 1,
refresh: true,
body: {
suggest: {
input: [
'Nevermind',
'Nirvana'
],
weight: 34
}
}
)
puts response
const response = await client.index({
index: "music",
id: 1,
refresh: "true",
document: {
suggest: {
input: ["Nevermind", "Nirvana"],
weight: 34,
},
},
});
console.log(response);
PUT music/_doc/1?refresh
{
"suggest" : {
"input": [ "Nevermind", "Nirvana" ],
"weight" : 34
}
}
The following parameters are supported:
| The input to store, this can be an array of strings or just a string. This field is mandatory. This value cannot contain the following UTF-16 control characters:
|
| A positive integer or a string containing a positive integer, which defines a weight and allows you to rank your suggestions. This field is optional. |
You can index multiple suggestions for a document as follows:
resp = client.index(
index="music",
id="1",
refresh=True,
document={
"suggest": [
{
"input": "Nevermind",
"weight": 10
},
{
"input": "Nirvana",
"weight": 3
}
]
},
)
print(resp)
response = client.index(
index: 'music',
id: 1,
refresh: true,
body: {
suggest: [
{
input: 'Nevermind',
weight: 10
},
{
input: 'Nirvana',
weight: 3
}
]
}
)
puts response
const response = await client.index({
index: "music",
id: 1,
refresh: "true",
document: {
suggest: [
{
input: "Nevermind",
weight: 10,
},
{
input: "Nirvana",
weight: 3,
},
],
},
});
console.log(response);
PUT music/_doc/1?refresh
{
"suggest": [
{
"input": "Nevermind",
"weight": 10
},
{
"input": "Nirvana",
"weight": 3
}
]
}
You can use the following shorthand form. Note that you can not specify a weight with suggestion(s) in the shorthand form.
resp = client.index(
index="music",
id="1",
refresh=True,
document={
"suggest": [
"Nevermind",
"Nirvana"
]
},
)
print(resp)
response = client.index(
index: 'music',
id: 1,
refresh: true,
body: {
suggest: [
'Nevermind',
'Nirvana'
]
}
)
puts response
const response = await client.index({
index: "music",
id: 1,
refresh: "true",
document: {
suggest: ["Nevermind", "Nirvana"],
},
});
console.log(response);
PUT music/_doc/1?refresh
{
"suggest" : [ "Nevermind", "Nirvana" ]
}
Querying
Suggesting works as usual, except that you have to specify the suggest type as completion
. Suggestions are near real-time, which means new suggestions can be made visible by refresh and documents once deleted are never shown. This request:
resp = client.search(
index="music",
pretty=True,
suggest={
"song-suggest": {
"prefix": "nir",
"completion": {
"field": "suggest"
}
}
},
)
print(resp)
response = client.search(
index: 'music',
pretty: true,
body: {
suggest: {
"song-suggest": {
prefix: 'nir',
completion: {
field: 'suggest'
}
}
}
}
)
puts response
const response = await client.search({
index: "music",
pretty: "true",
suggest: {
"song-suggest": {
prefix: "nir",
completion: {
field: "suggest",
},
},
},
});
console.log(response);
POST music/_search?pretty
{
"suggest": {
"song-suggest": {
"prefix": "nir",
"completion": {
"field": "suggest"
}
}
}
}
Prefix used to search for suggestions | |
Type of suggestions | |
Name of the field to search for suggestions in |
returns this response:
{
"_shards" : {
"total" : 1,
"successful" : 1,
"skipped" : 0,
"failed" : 0
},
"hits": ...
"took": 2,
"timed_out": false,
"suggest": {
"song-suggest" : [ {
"text" : "nir",
"offset" : 0,
"length" : 3,
"options" : [ {
"text" : "Nirvana",
"_index": "music",
"_id": "1",
"_score": 1.0,
"_source": {
"suggest": ["Nevermind", "Nirvana"]
}
} ]
} ]
}
}
_source
metadata field must be enabled, which is the default behavior, to enable returning _source
with suggestions.
The configured weight for a suggestion is returned as _score
. The text
field uses the input
of your indexed suggestion. Suggestions return the full document _source
by default. The size of the _source
can impact performance due to disk fetch and network transport overhead. To save some network overhead, filter out unnecessary fields from the _source
using source filtering to minimize _source
size. Note that the _suggest endpoint doesn’t support source filtering but using suggest on the _search
endpoint does:
resp = client.search(
index="music",
source="suggest",
suggest={
"song-suggest": {
"prefix": "nir",
"completion": {
"field": "suggest",
"size": 5
}
}
},
)
print(resp)
response = client.search(
index: 'music',
body: {
_source: 'suggest',
suggest: {
"song-suggest": {
prefix: 'nir',
completion: {
field: 'suggest',
size: 5
}
}
}
}
)
puts response
const response = await client.search({
index: "music",
_source: "suggest",
suggest: {
"song-suggest": {
prefix: "nir",
completion: {
field: "suggest",
size: 5,
},
},
},
});
console.log(response);
POST music/_search
{
"_source": "suggest",
"suggest": {
"song-suggest": {
"prefix": "nir",
"completion": {
"field": "suggest",
"size": 5
}
}
}
}
Filter the source to return only the | |
Name of the field to search for suggestions in | |
Number of suggestions to return |
Which should look like:
{
"took": 6,
"timed_out": false,
"_shards": {
"total": 1,
"successful": 1,
"skipped": 0,
"failed": 0
},
"hits": {
"total": {
"value": 0,
"relation": "eq"
},
"max_score": null,
"hits": []
},
"suggest": {
"song-suggest": [ {
"text": "nir",
"offset": 0,
"length": 3,
"options": [ {
"text": "Nirvana",
"_index": "music",
"_id": "1",
"_score": 1.0,
"_source": {
"suggest": [ "Nevermind", "Nirvana" ]
}
} ]
} ]
}
}
The basic completion suggester query supports the following parameters:
| The name of the field on which to run the query (required). |
| The number of suggestions to return (defaults to |
| Whether duplicate suggestions should be filtered out (defaults to |
The completion suggester considers all documents in the index. See Context Suggester for an explanation of how to query a subset of documents instead.
In case of completion queries spanning more than one shard, the suggest is executed in two phases, where the last phase fetches the relevant documents from shards, implying executing completion requests against a single shard is more performant due to the document fetch overhead when the suggest spans multiple shards. To get best performance for completions, it is recommended to index completions into a single shard index. In case of high heap usage due to shard size, it is still recommended to break index into multiple shards instead of optimizing for completion performance.
Skip duplicate suggestions
Queries can return duplicate suggestions coming from different documents. It is possible to modify this behavior by setting skip_duplicates
to true. When set, this option filters out documents with duplicate suggestions from the result.
resp = client.search(
index="music",
pretty=True,
suggest={
"song-suggest": {
"prefix": "nor",
"completion": {
"field": "suggest",
"skip_duplicates": True
}
}
},
)
print(resp)
response = client.search(
index: 'music',
pretty: true,
body: {
suggest: {
"song-suggest": {
prefix: 'nor',
completion: {
field: 'suggest',
skip_duplicates: true
}
}
}
}
)
puts response
const response = await client.search({
index: "music",
pretty: "true",
suggest: {
"song-suggest": {
prefix: "nor",
completion: {
field: "suggest",
skip_duplicates: true,
},
},
},
});
console.log(response);
POST music/_search?pretty
{
"suggest": {
"song-suggest": {
"prefix": "nor",
"completion": {
"field": "suggest",
"skip_duplicates": true
}
}
}
}
When set to true, this option can slow down search because more suggestions need to be visited to find the top N.
Fuzzy queries
The completion suggester also supports fuzzy queries — this means you can have a typo in your search and still get results back.
resp = client.search(
index="music",
pretty=True,
suggest={
"song-suggest": {
"prefix": "nor",
"completion": {
"field": "suggest",
"fuzzy": {
"fuzziness": 2
}
}
}
},
)
print(resp)
response = client.search(
index: 'music',
pretty: true,
body: {
suggest: {
"song-suggest": {
prefix: 'nor',
completion: {
field: 'suggest',
fuzzy: {
fuzziness: 2
}
}
}
}
}
)
puts response
const response = await client.search({
index: "music",
pretty: "true",
suggest: {
"song-suggest": {
prefix: "nor",
completion: {
field: "suggest",
fuzzy: {
fuzziness: 2,
},
},
},
},
});
console.log(response);
POST music/_search?pretty
{
"suggest": {
"song-suggest": {
"prefix": "nor",
"completion": {
"field": "suggest",
"fuzzy": {
"fuzziness": 2
}
}
}
}
}
Suggestions that share the longest prefix to the query prefix
will be scored higher.
The fuzzy query can take specific fuzzy parameters. The following parameters are supported:
| The fuzziness factor, defaults to |
| if set to |
| Minimum length of the input before fuzzy suggestions are returned, defaults |
| Minimum length of the input, which is not checked for fuzzy alternatives, defaults to |
| If |
If you want to stick with the default values, but still use fuzzy, you can either use fuzzy: {}
or fuzzy: true
.
Regex queries
The completion suggester also supports regex queries meaning you can express a prefix as a regular expression
resp = client.search(
index="music",
pretty=True,
suggest={
"song-suggest": {
"regex": "n[ever|i]r",
"completion": {
"field": "suggest"
}
}
},
)
print(resp)
response = client.search(
index: 'music',
pretty: true,
body: {
suggest: {
"song-suggest": {
regex: 'n[ever|i]r',
completion: {
field: 'suggest'
}
}
}
}
)
puts response
const response = await client.search({
index: "music",
pretty: "true",
suggest: {
"song-suggest": {
regex: "n[ever|i]r",
completion: {
field: "suggest",
},
},
},
});
console.log(response);
POST music/_search?pretty
{
"suggest": {
"song-suggest": {
"regex": "n[ever|i]r",
"completion": {
"field": "suggest"
}
}
}
}
The regex query can take specific regex parameters. The following parameters are supported:
| Possible flags are |
| Regular expressions are dangerous because it’s easy to accidentally create an innocuous looking one that requires an exponential number of internal determinized automaton states (and corresponding RAM and CPU) for Lucene to execute. Lucene prevents these using the |
Context Suggester
The completion suggester considers all documents in the index, but it is often desirable to serve suggestions filtered and/or boosted by some criteria. For example, you want to suggest song titles filtered by certain artists or you want to boost song titles based on their genre.
To achieve suggestion filtering and/or boosting, you can add context mappings while configuring a completion field. You can define multiple context mappings for a completion field. Every context mapping has a unique name and a type. There are two types: category
and geo
. Context mappings are configured under the contexts
parameter in the field mapping.
It is mandatory to provide a context when indexing and querying a context enabled completion field.
The maximum allowed number of completion field context mappings is 10.
The following defines types, each with two context mappings for a completion field:
resp = client.indices.create(
index="place",
mappings={
"properties": {
"suggest": {
"type": "completion",
"contexts": [
{
"name": "place_type",
"type": "category"
},
{
"name": "location",
"type": "geo",
"precision": 4
}
]
}
}
},
)
print(resp)
resp1 = client.indices.create(
index="place_path_category",
mappings={
"properties": {
"suggest": {
"type": "completion",
"contexts": [
{
"name": "place_type",
"type": "category",
"path": "cat"
},
{
"name": "location",
"type": "geo",
"precision": 4,
"path": "loc"
}
]
},
"loc": {
"type": "geo_point"
}
}
},
)
print(resp1)
response = client.indices.create(
index: 'place',
body: {
mappings: {
properties: {
suggest: {
type: 'completion',
contexts: [
{
name: 'place_type',
type: 'category'
},
{
name: 'location',
type: 'geo',
precision: 4
}
]
}
}
}
}
)
puts response
response = client.indices.create(
index: 'place_path_category',
body: {
mappings: {
properties: {
suggest: {
type: 'completion',
contexts: [
{
name: 'place_type',
type: 'category',
path: 'cat'
},
{
name: 'location',
type: 'geo',
precision: 4,
path: 'loc'
}
]
},
loc: {
type: 'geo_point'
}
}
}
}
)
puts response
const response = await client.indices.create({
index: "place",
mappings: {
properties: {
suggest: {
type: "completion",
contexts: [
{
name: "place_type",
type: "category",
},
{
name: "location",
type: "geo",
precision: 4,
},
],
},
},
},
});
console.log(response);
const response1 = await client.indices.create({
index: "place_path_category",
mappings: {
properties: {
suggest: {
type: "completion",
contexts: [
{
name: "place_type",
type: "category",
path: "cat",
},
{
name: "location",
type: "geo",
precision: 4,
path: "loc",
},
],
},
loc: {
type: "geo_point",
},
},
},
});
console.log(response1);
PUT place
{
"mappings": {
"properties": {
"suggest": {
"type": "completion",
"contexts": [
{
"name": "place_type",
"type": "category"
},
{
"name": "location",
"type": "geo",
"precision": 4
}
]
}
}
}
}
PUT place_path_category
{
"mappings": {
"properties": {
"suggest": {
"type": "completion",
"contexts": [
{
"name": "place_type",
"type": "category",
"path": "cat"
},
{
"name": "location",
"type": "geo",
"precision": 4,
"path": "loc"
}
]
},
"loc": {
"type": "geo_point"
}
}
}
}
Defines a | |
Defines a | |
Defines a | |
Defines a |
Adding context mappings increases the index size for completion field. The completion index is entirely heap resident, you can monitor the completion field index size using Index stats.
Category Context
The category
context allows you to associate one or more categories with suggestions at index time. At query time, suggestions can be filtered and boosted by their associated categories.
The mappings are set up like the place_type
fields above. If path
is defined then the categories are read from that path in the document, otherwise they must be sent in the suggest field like this:
resp = client.index(
index="place",
id="1",
document={
"suggest": {
"input": [
"timmy's",
"starbucks",
"dunkin donuts"
],
"contexts": {
"place_type": [
"cafe",
"food"
]
}
}
},
)
print(resp)
response = client.index(
index: 'place',
id: 1,
body: {
suggest: {
input: [
"timmy's",
'starbucks',
'dunkin donuts'
],
contexts: {
place_type: [
'cafe',
'food'
]
}
}
}
)
puts response
const response = await client.index({
index: "place",
id: 1,
document: {
suggest: {
input: ["timmy's", "starbucks", "dunkin donuts"],
contexts: {
place_type: ["cafe", "food"],
},
},
},
});
console.log(response);
PUT place/_doc/1
{
"suggest": {
"input": [ "timmy's", "starbucks", "dunkin donuts" ],
"contexts": {
"place_type": [ "cafe", "food" ]
}
}
}
These suggestions will be associated with cafe and food category. |
If the mapping had a path
then the following index request would be enough to add the categories:
resp = client.index(
index="place_path_category",
id="1",
document={
"suggest": [
"timmy's",
"starbucks",
"dunkin donuts"
],
"cat": [
"cafe",
"food"
]
},
)
print(resp)
response = client.index(
index: 'place_path_category',
id: 1,
body: {
suggest: [
"timmy's",
'starbucks',
'dunkin donuts'
],
cat: [
'cafe',
'food'
]
}
)
puts response
const response = await client.index({
index: "place_path_category",
id: 1,
document: {
suggest: ["timmy's", "starbucks", "dunkin donuts"],
cat: ["cafe", "food"],
},
});
console.log(response);
PUT place_path_category/_doc/1
{
"suggest": ["timmy's", "starbucks", "dunkin donuts"],
"cat": ["cafe", "food"]
}
These suggestions will be associated with cafe and food category. |
If context mapping references another field and the categories are explicitly indexed, the suggestions are indexed with both set of categories.
Category Query
Suggestions can be filtered by one or more categories. The following filters suggestions by multiple categories:
resp = client.search(
index="place",
pretty=True,
suggest={
"place_suggestion": {
"prefix": "tim",
"completion": {
"field": "suggest",
"size": 10,
"contexts": {
"place_type": [
"cafe",
"restaurants"
]
}
}
}
},
)
print(resp)
response = client.search(
index: 'place',
pretty: true,
body: {
suggest: {
place_suggestion: {
prefix: 'tim',
completion: {
field: 'suggest',
size: 10,
contexts: {
place_type: [
'cafe',
'restaurants'
]
}
}
}
}
}
)
puts response
const response = await client.search({
index: "place",
pretty: "true",
suggest: {
place_suggestion: {
prefix: "tim",
completion: {
field: "suggest",
size: 10,
contexts: {
place_type: ["cafe", "restaurants"],
},
},
},
},
});
console.log(response);
POST place/_search?pretty
{
"suggest": {
"place_suggestion": {
"prefix": "tim",
"completion": {
"field": "suggest",
"size": 10,
"contexts": {
"place_type": [ "cafe", "restaurants" ]
}
}
}
}
}
If multiple categories or category contexts are set on the query they are merged as a disjunction. This means that suggestions match if they contain at least one of the provided context values.
Suggestions with certain categories can be boosted higher than others. The following filters suggestions by categories and additionally boosts suggestions associated with some categories:
resp = client.search(
index="place",
pretty=True,
suggest={
"place_suggestion": {
"prefix": "tim",
"completion": {
"field": "suggest",
"size": 10,
"contexts": {
"place_type": [
{
"context": "cafe"
},
{
"context": "restaurants",
"boost": 2
}
]
}
}
}
},
)
print(resp)
response = client.search(
index: 'place',
pretty: true,
body: {
suggest: {
place_suggestion: {
prefix: 'tim',
completion: {
field: 'suggest',
size: 10,
contexts: {
place_type: [
{
context: 'cafe'
},
{
context: 'restaurants',
boost: 2
}
]
}
}
}
}
}
)
puts response
const response = await client.search({
index: "place",
pretty: "true",
suggest: {
place_suggestion: {
prefix: "tim",
completion: {
field: "suggest",
size: 10,
contexts: {
place_type: [
{
context: "cafe",
},
{
context: "restaurants",
boost: 2,
},
],
},
},
},
},
});
console.log(response);
POST place/_search?pretty
{
"suggest": {
"place_suggestion": {
"prefix": "tim",
"completion": {
"field": "suggest",
"size": 10,
"contexts": {
"place_type": [
{ "context": "cafe" },
{ "context": "restaurants", "boost": 2 }
]
}
}
}
}
}
The context query filter suggestions associated with categories cafe and restaurants and boosts the suggestions associated with restaurants by a factor of |
In addition to accepting category values, a context query can be composed of multiple category context clauses. The following parameters are supported for a category
context clause:
| The value of the category to filter/boost on. This is mandatory. |
| The factor by which the score of the suggestion should be boosted, the score is computed by multiplying the boost with the suggestion weight, defaults to |
| Whether the category value should be treated as a prefix or not. For example, if set to |
If a suggestion entry matches multiple contexts the final score is computed as the maximum score produced by any matching contexts.
Geo location Context
A geo
context allows you to associate one or more geo points or geohashes with suggestions at index time. At query time, suggestions can be filtered and boosted if they are within a certain distance of a specified geo location.
Internally, geo points are encoded as geohashes with the specified precision.
Geo Mapping
In addition to the path
setting, geo
context mapping accepts the following settings:
| This defines the precision of the geohash to be indexed and can be specified as a distance value ( |
The index time precision
setting sets the maximum geohash precision that can be used at query time.
Indexing geo contexts
geo
contexts can be explicitly set with suggestions or be indexed from a geo point field in the document via the path
parameter, similar to category
contexts. Associating multiple geo location context with a suggestion, will index the suggestion for every geo location. The following indexes a suggestion with two geo location contexts:
resp = client.index(
index="place",
id="1",
document={
"suggest": {
"input": "timmy's",
"contexts": {
"location": [
{
"lat": 43.6624803,
"lon": -79.3863353
},
{
"lat": 43.6624718,
"lon": -79.3873227
}
]
}
}
},
)
print(resp)
response = client.index(
index: 'place',
id: 1,
body: {
suggest: {
input: "timmy's",
contexts: {
location: [
{
lat: 43.6624803,
lon: -79.3863353
},
{
lat: 43.6624718,
lon: -79.3873227
}
]
}
}
}
)
puts response
const response = await client.index({
index: "place",
id: 1,
document: {
suggest: {
input: "timmy's",
contexts: {
location: [
{
lat: 43.6624803,
lon: -79.3863353,
},
{
lat: 43.6624718,
lon: -79.3873227,
},
],
},
},
},
});
console.log(response);
PUT place/_doc/1
{
"suggest": {
"input": "timmy's",
"contexts": {
"location": [
{
"lat": 43.6624803,
"lon": -79.3863353
},
{
"lat": 43.6624718,
"lon": -79.3873227
}
]
}
}
}
Geo location Query
Suggestions can be filtered and boosted with respect to how close they are to one or more geo points. The following filters suggestions that fall within the area represented by the encoded geohash of a geo point:
resp = client.search(
index="place",
suggest={
"place_suggestion": {
"prefix": "tim",
"completion": {
"field": "suggest",
"size": 10,
"contexts": {
"location": {
"lat": 43.662,
"lon": -79.38
}
}
}
}
},
)
print(resp)
response = client.search(
index: 'place',
body: {
suggest: {
place_suggestion: {
prefix: 'tim',
completion: {
field: 'suggest',
size: 10,
contexts: {
location: {
lat: 43.662,
lon: -79.38
}
}
}
}
}
}
)
puts response
const response = await client.search({
index: "place",
suggest: {
place_suggestion: {
prefix: "tim",
completion: {
field: "suggest",
size: 10,
contexts: {
location: {
lat: 43.662,
lon: -79.38,
},
},
},
},
},
});
console.log(response);
POST place/_search
{
"suggest": {
"place_suggestion": {
"prefix": "tim",
"completion": {
"field": "suggest",
"size": 10,
"contexts": {
"location": {
"lat": 43.662,
"lon": -79.380
}
}
}
}
}
}
When a location with a lower precision at query time is specified, all suggestions that fall within the area will be considered.
If multiple categories or category contexts are set on the query they are merged as a disjunction. This means that suggestions match if they contain at least one of the provided context values.
Suggestions that are within an area represented by a geohash can also be boosted higher than others, as shown by the following:
resp = client.search(
index="place",
pretty=True,
suggest={
"place_suggestion": {
"prefix": "tim",
"completion": {
"field": "suggest",
"size": 10,
"contexts": {
"location": [
{
"lat": 43.6624803,
"lon": -79.3863353,
"precision": 2
},
{
"context": {
"lat": 43.6624803,
"lon": -79.3863353
},
"boost": 2
}
]
}
}
}
},
)
print(resp)
response = client.search(
index: 'place',
pretty: true,
body: {
suggest: {
place_suggestion: {
prefix: 'tim',
completion: {
field: 'suggest',
size: 10,
contexts: {
location: [
{
lat: 43.6624803,
lon: -79.3863353,
precision: 2
},
{
context: {
lat: 43.6624803,
lon: -79.3863353
},
boost: 2
}
]
}
}
}
}
}
)
puts response
const response = await client.search({
index: "place",
pretty: "true",
suggest: {
place_suggestion: {
prefix: "tim",
completion: {
field: "suggest",
size: 10,
contexts: {
location: [
{
lat: 43.6624803,
lon: -79.3863353,
precision: 2,
},
{
context: {
lat: 43.6624803,
lon: -79.3863353,
},
boost: 2,
},
],
},
},
},
},
});
console.log(response);
POST place/_search?pretty
{
"suggest": {
"place_suggestion": {
"prefix": "tim",
"completion": {
"field": "suggest",
"size": 10,
"contexts": {
"location": [
{
"lat": 43.6624803,
"lon": -79.3863353,
"precision": 2
},
{
"context": {
"lat": 43.6624803,
"lon": -79.3863353
},
"boost": 2
}
]
}
}
}
}
}
The context query filters for suggestions that fall under the geo location represented by a geohash of (43.662, -79.380) with a precision of 2 and boosts suggestions that fall under the geohash representation of (43.6624803, -79.3863353) with a default precision of 6 by a factor of |
If a suggestion entry matches multiple contexts the final score is computed as the maximum score produced by any matching contexts.
In addition to accepting context values, a context query can be composed of multiple context clauses. The following parameters are supported for a geo
context clause:
| A geo point object or a geo hash string to filter or boost the suggestion by. This is mandatory. |
| The factor by which the score of the suggestion should be boosted, the score is computed by multiplying the boost with the suggestion weight, defaults to |
| The precision of the geohash to encode the query geo point. This can be specified as a distance value ( |
| Accepts an array of precision values at which neighbouring geohashes should be taken into account. precision value can be a distance value ( |
The precision field does not result in a distance match. Specifying a distance value like 10km
only results in a geohash precision value that represents tiles of that size. The precision will be used to encode the search geo point into a geohash tile for completion matching. A consequence of this is that points outside that tile, even if very close to the search point, will not be matched. Reducing the precision, or increasing the distance, can reduce the risk of this happening, but not entirely remove it.
Returning the type of the suggester
Sometimes you need to know the exact type of a suggester in order to parse its results. The typed_keys
parameter can be used to change the suggester’s name in the response so that it will be prefixed by its type.
Considering the following example with two suggesters term
and phrase
:
resp = client.search(
typed_keys=True,
suggest={
"text": "some test mssage",
"my-first-suggester": {
"term": {
"field": "message"
}
},
"my-second-suggester": {
"phrase": {
"field": "message"
}
}
},
)
print(resp)
response = client.search(
typed_keys: true,
body: {
suggest: {
text: 'some test mssage',
"my-first-suggester": {
term: {
field: 'message'
}
},
"my-second-suggester": {
phrase: {
field: 'message'
}
}
}
}
)
puts response
const response = await client.search({
typed_keys: "true",
suggest: {
text: "some test mssage",
"my-first-suggester": {
term: {
field: "message",
},
},
"my-second-suggester": {
phrase: {
field: "message",
},
},
},
});
console.log(response);
POST _search?typed_keys
{
"suggest": {
"text" : "some test mssage",
"my-first-suggester" : {
"term" : {
"field" : "message"
}
},
"my-second-suggester" : {
"phrase" : {
"field" : "message"
}
}
}
}
In the response, the suggester names will be changed to respectively term#my-first-suggester
and phrase#my-second-suggester
, reflecting the types of each suggestion:
{
"suggest": {
"term#my-first-suggester": [
{
"text": "some",
"offset": 0,
"length": 4,
"options": []
},
{
"text": "test",
"offset": 5,
"length": 4,
"options": []
},
{
"text": "mssage",
"offset": 10,
"length": 6,
"options": [
{
"text": "message",
"score": 0.8333333,
"freq": 4
}
]
}
],
"phrase#my-second-suggester": [
{
"text": "some test mssage",
"offset": 0,
"length": 16,
"options": [
{
"text": "some test message",
"score": 0.030227963
}
]
}
]
},
...
}
The name | |
The name |