功能介绍
保序回归在观念上是寻找一组非递减的片段连续线性函数(piecewise linear continuous functions),即保序函数,使其与样本尽可能的接近。
参数说明
名称 |
中文名称 |
描述 |
类型 |
是否必须? |
默认值 |
predictionCol |
预测结果列名 |
预测结果列名 |
String |
✓ |
脚本示例
脚本代码
data = np.array([[0.0, 0.3],
[1.0, 0.27],
[1.0, 0.55],
[1.0, 0.5],
[0.0, 0.2],
[0.0, 0.18],
[1.0, 0.1],
[0.0, 0.45],
[1.0, 0.9],
[1.0, 0.8],
[0.0, 0.7],
[1.0, 0.6],
[1.0, 0.35],
[1.0, 0.4],
[1.0, 0.02]])
df = pd.DataFrame({"feature" : data[:,0], "label" : data[:,1]})
data = dataframeToOperator(df, schemaStr="label double, feature double",op_type="batch")
trainOp = IsotonicRegTrainBatchOp()\
.setFeatureCol("feature")\
.setLabelCol("label")
model = trainOp.linkFrom(data)
predictOp = IsotonicRegPredictBatchOp().setPredictionCol("result")
predictOp.linkFrom(model, data).collectToDataframe()
脚本运行结果
模型结果
model_id |
model_info |
0 |
{“vectorCol”:”\”col2\””,”featureIndex”:”0”,”featureCol”:null} |
1048576 |
[0.02,0.3,0.35,0.45,0.5,0.7] |
2097152 |
[0.5,0.5,0.6666666865348816,0.6666666865348816,0.75,0.75] |
预测结果
col1 |
col2 |
col3 |
pred |
1.0 |
0.9 |
1.0 |
0.75 |
0.0 |
0.7 |
1.0 |
0.75 |
1.0 |
0.35 |
1.0 |
0.6666666865348816 |
1.0 |
0.02 |
1.0 |
0.5 |
1.0 |
0.27 |
1.0 |
0.5 |
1.0 |
0.5 |
1.0 |
0.75 |
0.0 |
0.18 |
1.0 |
0.5 |
0.0 |
0.45 |
1.0 |
0.6666666865348816 |
1.0 |
0.8 |
1.0 |
0.75 |
1.0 |
0.6 |
1.0 |
0.75 |
1.0 |
0.4 |
1.0 |
0.6666666865348816 |
0.0 |
0.3 |
1.0 |
0.5 |
1.0 |
0.55 |
1.0 |
0.75 |
0.0 |
0.2 |
1.0 |
0.5 |
1.0 |
0.1 |
1.0 |
0.5 |