GLM流式预测
功能介绍
使用GLM模型,对数据进行流式预测
参数说明
名称 |
中文名称 |
描述 |
类型 |
是否必须? |
默认值 |
linkPredResultCol |
连接函数结果的列名 |
连接函数结果的列名 |
String |
|
null |
predictionCol |
预测结果列名 |
预测结果列名 |
String |
✓ |
脚本示例
脚本代码
# data
data = np.array([
[1.6094,118.0000,69.0000,1.0000,2.0000],
[2.3026,58.0000,35.0000,1.0000,2.0000],
[2.7081,42.0000,26.0000,1.0000,2.0000],
[2.9957,35.0000,21.0000,1.0000,2.0000],
[3.4012,27.0000,18.0000,1.0000,2.0000],
[3.6889,25.0000,16.0000,1.0000,2.0000],
[4.0943,21.0000,13.0000,1.0000,2.0000],
[4.3820,19.0000,12.0000,1.0000,2.0000],
[4.6052,18.0000,12.0000,1.0000,2.0000]
])
df = pd.DataFrame({"u": data[:, 0], "lot1": data[:, 1], "lot2": data[:, 2], "offset": data[:, 3], "weights": data[:, 4]})
source = dataframeToOperator(df, schemaStr='u double, lot1 double, lot2 double, offset double, weights double', op_type='batch')
featureColNames = ["lot1", "lot2"]
labelColName = "u"
# train
train = GlmTrainBatchOp()\
.setFamily("gamma")\
.setLink("Log")\
.setRegParam(0.3)\
.setMaxIter(5)\
.setFeatureCols(featureColNames)\
.setLabelCol(labelColName)
source.link(train)
# batch predict
predict = GlmPredictBatchOp()\
.setPredictionCol("pred")
predict.linkFrom(train, source)
predict.print()
# eval
eval = GlmEvaluationBatchOp()\
.setFamily("gamma")\
.setLink("Log")\
.setRegParam(0.3)\
.setMaxIter(5)\
.setFeatureCols(featureColNames)\
.setLabelCol(labelColName)
eval.linkFrom(train, source)
eval.print()
# stream predict
source_stream = dataframeToOperator(df, schemaStr='u double, lot1 double, lot2 double, offset double, weights double', op_type='stream')
predict_stream = GlmPredictStreamOp(train)\
.setPredictionCol("pred")
predict_stream.linkFrom(source_stream)
predict_stream.print()
脚本运行结果
u |
lot1 |
lot2 |
offset |
weights |
pred |
0 |
1.6094 |
118.0 |
69.0 |
1.0 |
2.0 |
0.378525 |
1 |
2.3026 |
58.0 |
35.0 |
1.0 |
2.0 |
0.970639 |
2 |
2.7081 |
42.0 |
26.0 |
1.0 |
2.0 |
1.126458 |
3 |
2.9957 |
35.0 |
21.0 |
1.0 |
2.0 |
1.227753 |
4 |
3.4012 |
27.0 |
18.0 |
1.0 |
2.0 |
1.258898 |
5 |
3.6889 |
25.0 |
16.0 |
1.0 |
2.0 |
1.305654 |
6 |
4.0943 |
21.0 |
13.0 |
1.0 |
2.0 |
1.367991 |
7 |
4.3820 |
19.0 |
12.0 |
1.0 |
2.0 |
1.383571 |
8 |
4.6052 |
18.0 |
12.0 |
1.0 |
2.0 |
1.375774 |