Nested(Name1 Type1, Name2 Type2, …)

A nested data structure is like a nested table. The parameters of a nested data structure – the column names and types – are specified the same way as in a CREATE query. Each table row can correspond to any number of rows in a nested data structure.

Example:

  1. CREATE TABLE test.visits
  2. (
  3. CounterID UInt32,
  4. StartDate Date,
  5. Sign Int8,
  6. IsNew UInt8,
  7. VisitID UInt64,
  8. UserID UInt64,
  9. ...
  10. Goals Nested
  11. (
  12. ID UInt32,
  13. Serial UInt32,
  14. EventTime DateTime,
  15. Price Int64,
  16. OrderID String,
  17. CurrencyID UInt32
  18. ),
  19. ...
  20. ) ENGINE = CollapsingMergeTree(StartDate, intHash32(UserID), (CounterID, StartDate, intHash32(UserID), VisitID), 8192, Sign)

This example declares the Goals nested data structure, which contains data about conversions (goals reached). Each row in the ‘visits’ table can correspond to zero or any number of conversions.

Only a single nesting level is supported. Columns of nested structures containing arrays are equivalent to multidimensional arrays, so they have limited support (there is no support for storing these columns in tables with the MergeTree engine).

In most cases, when working with a nested data structure, its individual columns are specified. To do this, the column names are separated by a dot. These columns make up an array of matching types. All the column arrays of a single nested data structure have the same length.

Example:

  1. SELECT
  2. Goals.ID,
  3. Goals.EventTime
  4. FROM test.visits
  5. WHERE CounterID = 101500 AND length(Goals.ID) < 5
  6. LIMIT 10
  1. ┌─Goals.ID───────────────────────┬─Goals.EventTime───────────────────────────────────────────────────────────────────────────┐
  2. [1073752,591325,591325] ['2014-03-17 16:38:10','2014-03-17 16:38:48','2014-03-17 16:42:27']
  3. [1073752] ['2014-03-17 00:28:25']
  4. [1073752] ['2014-03-17 10:46:20']
  5. [1073752,591325,591325,591325] ['2014-03-17 13:59:20','2014-03-17 22:17:55','2014-03-17 22:18:07','2014-03-17 22:18:51']
  6. [] []
  7. [1073752,591325,591325] ['2014-03-17 11:37:06','2014-03-17 14:07:47','2014-03-17 14:36:21']
  8. [] []
  9. [] []
  10. [591325,1073752] ['2014-03-17 00:46:05','2014-03-17 00:46:05']
  11. [1073752,591325,591325,591325] ['2014-03-17 13:28:33','2014-03-17 13:30:26','2014-03-17 18:51:21','2014-03-17 18:51:45']
  12. └────────────────────────────────┴───────────────────────────────────────────────────────────────────────────────────────────┘

It is easiest to think of a nested data structure as a set of multiple column arrays of the same length.

The only place where a SELECT query can specify the name of an entire nested data structure instead of individual columns is the ARRAY JOIN clause. For more information, see “ARRAY JOIN clause”. Example:

  1. SELECT
  2. Goal.ID,
  3. Goal.EventTime
  4. FROM test.visits
  5. ARRAY JOIN Goals AS Goal
  6. WHERE CounterID = 101500 AND length(Goals.ID) < 5
  7. LIMIT 10
  1. ┌─Goal.ID─┬──────Goal.EventTime─┐
  2. 1073752 2014-03-17 16:38:10
  3. 591325 2014-03-17 16:38:48
  4. 591325 2014-03-17 16:42:27
  5. 1073752 2014-03-17 00:28:25
  6. 1073752 2014-03-17 10:46:20
  7. 1073752 2014-03-17 13:59:20
  8. 591325 2014-03-17 22:17:55
  9. 591325 2014-03-17 22:18:07
  10. 591325 2014-03-17 22:18:51
  11. 1073752 2014-03-17 11:37:06
  12. └─────────┴─────────────────────┘

You can’t perform SELECT for an entire nested data structure. You can only explicitly list individual columns that are part of it.

For an INSERT query, you should pass all the component column arrays of a nested data structure separately (as if they were individual column arrays). During insertion, the system checks that they have the same length.

For a DESCRIBE query, the columns in a nested data structure are listed separately in the same way.

The ALTER query is very limited for elements in a nested data structure.